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Abstract

In this paper, we consider the class of partially symmetric functions
and outline a method to realize them. Fach such function can be expressed
as a sum of totally symmetric functions such that a circuit can be designed
whose complexity depends on the size of such symmetric cover. We com-
pare the sizes of symmetric and sum-of-product covers and show that the
symmetric cover will be substantially smaller for this class of functions.
We also establish bounds on the area required to realize these circutts in a
reasonable layout model of VLSI. Qur results show that these layouts will
be considerably smaller than the corresponding PLA’s for the partially sym-
melric functions.
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1 Introduction

The problem of the automated design of good circuits for a given set of
Boolean functions has been studied extensively in the literature (e.g. [1-
5]). Researchers have attempted to reach optimal solutions under some cost
measures associated with different technologies. In spite of these efforts,
optimal circuits are known only for either specific functions such as those
arising in integer addition and integer multiplication, or few specialized
classes of functions. This has led people to develop heuristic techniques
[1,5-8] that work reasonably well in practice without achieving any opti-

mality criterion.

In this paper, we study the properties of partially symmetric functions
[9-11] and describe a new method to realize them. We try to express each
such function as a sum of totally symmetric functions and show that a
circuit can be designed with the complexity dependent on the size of such
symmetric cover. We compare the Jsizes of symmetric covers and sum-of-
product covers and show that the symmetric cover will be substantially
smaller if the functions have a reasonable degree of symmetry. If the given
functions have no symmetry, the symmetric cover reduces to a sum-of-
product cover. We also establish bounds on the area required to realize
these circuits in a reasonable layout mode! of VLSI {12,13] and show that
these layouts will be considerably smaller than the corresponding PLA’s if

the functions have a moderate degree of symmetry. We use the PLA’s to



compare our results because they are widely used in practice.

The rest of the paper is organized as follows. In the next section, we
introduce the class of partially symmetric functions and describe some of
their properties. The class of totally symmetric functions are considered
as a special case. A comparison between the sizes of symmetric covers
and sum-of-product covers is made in section 3, while section 4 is reserved
for the layout scheme for our circuits and for establishing bounds on the

corresponding areas.

2 Basic Properties and Realization Scheme

We introduce in this section the class of the partially symmetric functions
[9-11] and establish some of their properties. We later show how to take
advantage of the symmetric properties when realizing these functions. First

of all, we start by reviewing some well-known definitions from switching

theory [14].

Let f(z1,...,%,) and g(z1,...,T,) be n-variable Boolean functions. f
is said to cover g if f = 1 whenever g = 1. Let h be a product term of the
literals of a subset of {zy,...,z,} where by literal we mean the appearence
of a complemented or uncomplemented variable. h is said to be an implicant
of f if f covers h; h is a prime implicant of f if & is an implicant of f such
that the deletion of any literal from it results in a new product which is not

covered by f. A cover C of f is set of implicants of f such that C covers f;



C is said to be a minimum cover of f is all the implicants it contains are

prime implicants and the number of these prime implicants is minimum.
2.1 Partially symmetric functions

Let f(z1,Z2,...,Zs) be a Boolean function and let p = {X;, X3,...,X,}
be a partition of {z1,z;,...,2,} such that |X;| = n;, 1 < ¢ < s and

Yi—ini =n. f is callel p-symmetric if
(X1, Xe,..., X)) = f(X1,X3,..., X))
where X] = [[;{X:), and []; is an arbitrary permutation on X;.

Let w(X) be the weight function (counting the number of 1’s) over
vector X. It is obvious that f can be determined by w(X;) =k;, 1<:<

s. Define C(f) to be
CUf) = { (kikayeers k) | f =1 for w(Xi) =ki, 1<i<s}
Let (ky, Ky, ..., ks) € C(f) and let
Olky ez, k) (X) = Uél(Xl)Ukz(Xz) oo o, (Xo)

where oy, (X;) is the kith elementary symmetric function on X;, which

equals to 1 when w(X;) = k;. Clearly,

f(a:l,a:g,...,z,,) == Z GIS(X)

k=(ky k2,...k.)eC()

After manipulating the above equation, we can rewrite f as follows:

f(.’l:l,.’ltz, e ’zn) = Z fiy (Xl)ffz (Xz) ree fia(XS) (1)



where

fi;(X;) = D ox(X;) for certain value of k. (2)
k

Generalizing the concepts of prime implicants and minimum realiza-

tion, we define the following terms.

Definition 2.1 The product term P = f; (X)... fi,(X:) in equation(1)
will be called a symmetric smplicant of f if f = 1 whenever P = 1. Let
each f; (X;) in P be called an symmetric component. Then P will be called
a symmetric prime implicant if P is a symmetric tmplicant and there ts no

other symmetric implicant P' with fewer symmetric components such that

P! =1 whenever P = 1.

Definition 2.2 A symmetric cover C, of a function f is a set of symmetric
implicants such that C, covers f; C, ts said to be a minimum symmetric
cover of f if all the symmetric implicants it contains are symmetric prime
implicants and the number of these symmetric prime implicants is mini-

mum.

Definition 2.3 FEquation(1) will be called a minimum symmetric realiza-

t1on if the product terms in it form a minimum symmetric cover.
It is not hard to show the following lemmia.

Lemma 2.1 Let f be a partially symmetric function with respect to the

symmetric partition {Xy,..., X,}. Then there exists a minimum symmet-



ric realization of f such that each of the products is a symmetric prime

implicant.

Without loss of generality, assume n; > 2for 1 <¢<t, t <sandn; =1

for t +1 < j < s. Then equation(1) can be rewritten as follows.

F(@1, 220y @n) = 3 fir (X0 Fin (Xa) - fir(Xe) 2500 2l (3)

$tt1
Let Y = f; (X)) fi, (X2) ... fi. (X3)-

f(z1,z2,...,2Z0) = ZK -z("‘“)...x,(f')

41

It follows that equation(3) can be realized by a structure that has
three main parts (figure(1)): (i) a set of ES blocks which generate all the
elemenary symmtric functions required by f; (X;)’s, (ii) a NAND plane
which realizes Y;’s, and (iii) a PLA handling those single variable partitions
(AND plane) and generating the outputs of the given functions (OR plane).
Figure(2) shows the circuit diagram for the NAND plane; the realization

scheme for the ES blocks will be discussed later.

2.2 Totally Symmetric Functions

As a special case of partially symmetric functions, a function is said to be
totally symmetric if in equation(1), s = 1, i.e. there is only one symmetric

partition which contains all the variables. Formally,

Definition 2.4 A Boolean function f(zy,...,z,) 35 symmetric if for any

permutation m € S,y f(Z1,..0,20) = f(Zx)s- -+ Ta(n))-
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Figure 1: Realization Scheme for Partially Symmetric Functions

Let X = (zi1,...,2,) be a binary n-tuple and let the weight w(X) of
X be the number of 1’s in X. From the definition, we can see that the value
of a symmetric function f(X) depends on the weight w(X); in other words,
f has the same value on all binary n-tuples that have the same weight.
Therefore, if f(X) has value a;, a; € {0,1} on n-tuples X of weight i, for

0 <t < n, then f(X) can be written in the form

f(X) = 2_a; 0 0i(X)
1==0
where Y and o denote AND and OR respectively, and the i-th elementary

symmetric function, 0;(z1,...,z,) equals to 1 when w(zy,...,z.) = 1.

Let F = {fi(z1,-..,%n)}=; be a set of symmetric Boolean functions

and I C {0,...,n} be such that a; = 1 for all + € I. Then as shown

6
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Figure 2: Circuit diagram of NAND plane

in figure(3) a realization of F will consist of two parts: (1) a weight(or
counting) function fy,(z1,...,%,) that counts the number of 1’s among the
x’s and outputs its binary expansion ; (2) a weight detector that takes the

output of the weight function and produces the set F' corresponging to I.

— WEIGHT S WEIGHT _._>
FUNCTION | “exs DETECTOR | F (%)

Figure 3: Scheme to realize symmetric fucntions



3 Comparison of the symmetric and the sum-
of-product covers

As discussed in the previous section, any partially symmetric function can
be manipulated into the form of equation(1) whose product terms are sym-
metric prime implicants which form a minimum symmetric cover. In this
section, we compare the size of this realization with that of the minimum

sum-of-product realization.

Let ¢,(f) be the number of symmetric prime implicants in the mini-
mum symmetric realization of equation (1) and let ¢(f) be the number of
prime implicants in a minimum sum-of-product cover of f. We will make
a comparison of ¢,(f) with ¢(f) and show that ¢,(f) will be much smaller

than ¢(f) whenever f has a reasonable degree of symmetry.

we first introduce the definitions and establish some properties of

convex blocks and prime convex blocks [11]

3.1 Convex Blocks

Definition 3.1 A convez block, denoted as wlP9(X) is a Boolean function

defined as follows:

1, f weight(X) € [p,q|;
0, otherwise

wlPal(X) = {

W; = wlP»%1(X) is a prime convez block of a function f if there is no other

convez block W = wlPiG1(X) such that W; = 1=W; =1=> f = 1.



Lemma 3.1 All the implicants of an n-variable convez block w!P9(X) has
u uncomplemented literals and v complemented literals where u € [p, q| and

n—¢g<v<n-—u.

Proof: The bound for u follows directly from the definition. The upper

bound of v is also trival. Now we check the lower bound of v.

Suppose in an implicant P, v < n — q. Then there are (n — u — v)
out of the n variables not appearing in P. When we expand P into its
minterms, each of the (n — u — v) new variables may be either 0 or 1 and
their weights may range from 0 to n — u — v. Then the resulting weight of
minterms of P may be v+ (n —u —v) = n — v > ¢, a contradiction. Thus

v>n—gq. <

Lemma 3.2 All the prime implicants in the convez block, wP4(X), contain
p uncomplemented literals and n— q complemented literals. Moreover, every

one of them covers 297P minterms.

Proof: Let P be the set of product terms containing p uncomplemented
and n — q complemented literals. From previous lemma, we see that P is
a subset of implicants of wlP4(X). Since every element of P has the least
number of literals, it is clear that no two of them could be combined to
reduce the number of literals. On the other hand, it is not hard to check
that any implicant of wP9(X) not in P must be covered by at least one

element of P. Thus P is the set of all the prime implicants.



To prove the bound on the number of minterms covered by a prime
implicant of w9(X), notice that since every prime implicant contains p
uncomplemented and n — ¢ complemented literals, there are (g — p) free

variables. Hence 297P minterms can be deduced from a prime implicant.

¢

Theorem 3.1 Given a convex block wlP9(X), the size of the minimum
cover, C(wlP9(X)), satisfies

o) 2270 3 (7)

N ?
i=p

Proof: It is clear that there are totally Z?:,, (':) minterms covered by
wlP9(X) and from lemma 3.2, a prime implicant covers 2977 minterms.

Therefore,

C (WP 9(Xx)) > é (’;‘) J2r o

3.2 Comparison

Recall the minimum symmetric realization of equation(1).
Ca(f)
f(zl’ L ,xn) = Z fil (X1)7 L fi:(Xa)
i=1
It is obvious that f;,(X;) can be expressed in form of convex blocks and f
can be rewritten as

e, (f)
f(Xl,Xz,...,Xa) = Z I’V, (4)
=1

16



where
2 [ul.jlti.j]
W= w7 (X)
i=1

It is clear that ¢,(f) < ¢/(f). Now we show the following.

Lemma 3.3 Suppose in the equation(4) there exist at least one pair of in-
tervals [v;,,t;,] and [vj,,t;,] in W; and W; respectively, for all 1 # j, such
that they are nonoverlapping and non-adjacent, then the W;’s are prime con-
vez blocks of f and Minterm(W;)NMinterm(W;) = 0, where Minterm(W;)

1S the set of all the minterms of W;.

Proof: Suppose not. Let m be a minterm covered by both W; and W;.
Then for some k, [vik, tix| and [vj, t;x] are not adjacent and nonoverlapping.
Assume, without loss of generality, that v;; > ¢;;. Since m € Minterm(W;),
m has at least n; —t;; complemented variables from X. On the other hand,
m € Minterm(W;) implies that at most n; — v;; complemented variables
from Xj;. But n; — vji < n; — ti, a contradiction and hence the claim

follows. <

Theorem 3.2 Let f be a function partially symmetric over {Xy,...,X,}
with |X;| = n;, such that there is at least one j such that n; > 2,

for 1 < 1, 7 < s. Suppose that [ is ezpressed in form of equation(4) and
that there exist at least a pair of intervals [vix,tix] and [vj,tjx] which are
not adjacent and nonoverlapping for every 1t and 7, 1 # j. If we replace

each w[”‘f""i](Xj) with its minimum cover and apply the distributive law,

11



the products obtained are all prime smplicants of f. Moreover, they form a

minimum cover.

Proof: We start by observing the following fact. Let {pi;} and {p:;} be
the minimum covers of fi(X;) and f2(X3) respectively, where X; N X, = 0.

Then {pypz;} is a minimum cover of prime implicants of f;(X7)f2(Xz).

It follows that if we replace each w with its minimum cover, the prod-
ucts obtained from [J;_; wl¥iitiil( X;) form a minimum cover of W;, 1 < 1 <
¢'(f). Moreover, from the given conditions of disjointness and nonover-
lappingness, lemma 3.3 ensures W; and W; are prime convex blocks and
Minterm(W;) N Minterm(W;) = 0, Vi # j.

We now show that each element p of the minimum cover of W; is a
prime implicant of f. Suppose not. Then there exists an implicant ¢q of f
such that either p=1=>¢=1= f =1 or p+ ¢ is an implicant of f. In
the first case, ¢ covers some minterms of f. By the disjointness property,
q can only cover minterm belonging to one W;, for some j. It is then easy
to check that the first case can not happen. The second case implies that

W; and W; are adjacent, which is impossible.

Using the above claim, it is easy to check that the resulting prime

implicants form a minimum cover. <

12



Corollary 3.1 Let ¢(f) be the size of the minimum cover of f and let c,(f)

be the size of the minimum symmetric cover. Then

o > Lt £ )

=1 j k=v;;

Example 1:  Suppose f(z,...,Z12) is partially symmetric over the sym-
metric partition (X3, X, X3, Z10, Z11, Z12), where || X1 ||= 3, || X2 ||= 2 and
| X5 ||=4. Let f be given by:

(X1, X2, X3, T10, 11, T12) = w® (Xl)w[o'll(Xz)wp's](XS)floxnzu
+w[2’3](X1)w[1'2](Xz)wu's](XS)"’IOEH‘T”

+wl (X )l (X)W (X)) Z 10 11T12

Here, ¢,(f) = 3 and by the above corollary,

= [0+ Q[0 0]+ (9 -0
o0 O[O0+ ()
R RH S G R G

= c(f)>30 <

(=]
o

Corollary 3.2 Let f be a totally symmetric function which takes the value
1 over the mazimal and nonoverlapping intervals [ay, bi],..., [a:, b]. Then

¢s(f) =1 and

(/) zg [2“‘*”‘ > (Z)}

k=a;

13



Example 2: Let f be the parity function on n variables. Then a; =
by =1,a; =b; =3---. Hence
n
c > .
(f) - g <2z + 1)
If n is odd, the above bound gives ¢(f) > 2! (actually an exact bound

can be derived for this function). ¢

Example 3: Let n be even and let f be the following symmetric function

1 if the number of 1’s is < 7
0 otherwise

f(:cl,...zn)={

Then,

v

™
(]

[N

3

|
et

!

[V

|

I
-

As a conclusion, we observe the following facts:

1. The size of the symmetric minimum cover is always less than or equal

to that of sum-of-product minimum cover.

2. The size of the minimum symmetric cover will be substantially smaller
than that of the minimum cover if the function has a high degree of

symmetries (i.e. s is small).

3. When there is no symmetry at all, ¢,(f) = ¢(f).

14



4 Layout of Partially Symmetric Functions

In this section we will describe how to lay out partially symmetric functions
based on the realization schemes proposed in the previous sections. We
consider the grid model [12] where the processing elements are mapped
onto the grid points and wires can only run along grid lines such that no

two wires overlap.

4.1 Layout for totally symmetric functions

We recall that any set of totally symmetric functions can be realized by two
main parts, namely, weight function tree and weight detector (figure(3)).

In what follows, we will discuss how to lay them out efficiently.

4.1.1 Weight function

The weight function, f, : {0,1}* — {0,1}[*¢(*+11  counts the number
of 1’s among the input variables and outputs its binary expansion. For
simplicity, assume n = 2% — 1. It is well-known that f,, can be realized by

a divide-and-conquer strategy as follows.

ft(uzk_l) (Il, feey zn) -
fisjzk—l__l) (331, e, .’Ezk—l_l) + fé}l’k"l)(xzk_x)“h ey .'1:21:—1_2) + ZTok_y

(5)

If we take full (or half) full adder as base operator, then equation(5) can

be implemented as in figure(4).
To lay out this tree, we require that all the inputs and outputs be on

15
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Figure 4: Realization of weight function tree

the boundary and that the enclosing rectangle be as close to a square as

possible.

Theorem 4.1 It is possible to lay out the tree of the weight function of n
variables in a square of size O(+\/nlogn) such that all the inputs and outputs

lie on the boundary.

Proof: We first show how to lay out the tree linearly in an area of

O(nlog® n) and then show how to turn it into square.

Lay out the tree of (say) (k — 1)-adjacent adders in the middle. Re-
cusively, lay out the left subtree on the left side of the root and the right
subtree on the right side. The length of the layout is clearly O(n). Its height

H(k), i.e. the number of horizontal tracks, is given by the recurrence
Hk)<H(k-1)+k—1 and H(2)=1

It then follows that H(k) = O(kz) = O(logz n)-

16



Next, as illustrated on the left, we fold the

root

C p722222 ] linear layout into a square with the root on the
t A J top row. This folding procedure does not in-
zl crease the area by more than a factor of 2 [12].

ft 3 i 3 Thus we can make the layout into a square with

the desired properties. <

4.1.2 Weight detector

Receiving the outputs of the weight function tree, the weight detector
generates the values of the given functions. Let m = [loga(n + 1)] and
I c{0,1,...,n}, such that ¢; = 1 for all ¢ € I. Then f, : {0, 1}[tos2(+1)] _,

{0,1}, can be written in the following form.

fp(yli--- ’ym) = Zgi(yl,--- sym)
el
where §; equals to 1 only when the binary expansion of ¢ is equivalent to
(yl, P ,ym).
It is very easy to use PLA to)implement fp once I is known. Since

I C {0,1,...,n}, the PLA implementation requires at most n-+1 rows on

the AND/OR planes. Hence, the corresponding area is O(n log n).

Theorem 4.2 Gtven m n-variable symmetric functions, the above scheme

could lay them out in O{nlog® n + mn) area with O(logn) time delay.

Based on this method, a program SYMMETRIC has been written

which first checks whether the given set of Boolean function are symmetric

17
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and in the affirmative produces layout for the subset that are symmetric.

Figure(5) shows two layouts generated by this program.

4.2 Layout for partially symmetric functions

Extending the realization scheme in figure(1), we determine the floor plan of
the layout to be the one shown in figure(6) where NAND and PLA parts are
as described previously, and ES_BLOCK is composed of all the elementary
symmetric blocks, ES(X;), which can be laid out by the method described

in the previous subsection. Now, we show the following theorem.

Theorem 4.3 Let f be partially symmetric with respect to the symmetric
partition {X1, Xs,...,X,} such that |Xi| = n;, 1 < ¢ < s, and let ¢,(f)
be the number of terms tn a minimum symmetric ralszation of f. Suppose

nd| >2for1<i<t, t<sand|nj]=1fort+1<35<s. Then we can

18



1nput

single variable partitions 1,\C'U‘!'-l:’Ut
PLA PLA
NAND AND plane OR plang

> ES_BLOCK —
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Figure 6: Floor plan to lay out Partially Symmetric Functions

layout f in an area of order

(0] (zt: nidog® n; + nc,(f))

=1

Proof: We have already seen how to layout w(X;) in an area of O(n;log?n;).
It is easy to see that we can get all éhe elementary symmetric functions on
X; in essentially the same area. Hence let’s assume that we have cells
ES(X;) to compute the required elementary symmetric functions of X; for
alli. From the floor plan in figure(6), we can lay out the partially symmetric

functions in the stated area. <

Comparing this area with that required by an optimal PLA implemen-

tation, we note that if ¢(f) denotes the size of minimum cover, then the

19
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Figure 7: Layout of partially symmetric functions by SYMBL

area of an optimal PLA is O(nc(f)). Since the area nc,(f) in the minimum
symmetric realization tends to be almost always the dominant term, using
corollary 3.1, we can see that if the function has a good degree of symme-
try, substantial reduction in area will result by using the above method.
Shown in figure(7) is the layout of two 21-variable functions generate by

the system SYMBL [15] based on this method.
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